Answer:
Option B
Explanation:
Equation of line passing through the point (1,-5,9) and parrallel to x=y=z is
$\frac{x-1}{1}=\frac{y+5}{1}=\frac{z-9}{1}=\lambda$ (say)
Thus, any point on this line is of the form $(\lambda+1,\lambda-5,\lambda+9)$
Now, if $P(\lambda+1,\lambda-5,\lambda+9)$ is the point of intersection of line and plane, then
$(\lambda+1)-(\lambda-5)+\lambda+9=5$
$\Rightarrow \lambda+15=5$
$\Rightarrow \lambda =-10$
$\therefore$ Cordinates of point P are
(-9,-15,-1)
Hence, required distance
$=\sqrt{(1+9)^{2}+(-5+15)^{2}+(9+1)^{2}}$
$=\sqrt{(10)^{2}+(10)^{2}+(10)^{2}}=10\sqrt{3}$